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Abstract: Visible-near infrared reflectance spectra are proposed for the characterization of IRMM 481 peanuts variety in 

comparison to powder food materials: wheat flour, milk and cocoa.  Multidimensional analysis of reflectance spectra of 

powder samples shows a specific NIR band centred at 1200 nm that identifies peanut compared to the rest of food ingredients, 

regardless compaction level and temperature.  Spectral range of 400-1000 nm is not robust for identification of blanched 

peanut.  The visible range has shown to be reliable for the identification of pre-treatment and processing of unknown 

commercial peanut samples.  A spectral index is proposed based on the combination of three wavelengths around 1200 nm 

that is 100% robust against pre-treatment (raw or blanched) and roasting (various temperatures and treatment duration). 
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1  Introduction1 

Peanut (Arachis hypogaea) is a very popular food 

ingredient which is used in various commercial food 

materials such as biscuit, bread and confectionery product 

(Hird et al., 2003).  In twenty century peanut has been 

considered as a most severe food allergen for the 

commercial food material (Hourihane et al., 1997).  But 

the avoidance of peanut-containing foods can be difficult 

for peanut allergen sufferers and food producers, and thus 

reliable analytical methods for the detection of hidden 
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allergens in foodstuff are required by the food industry 

and control agencies.  

The allergenic proteins of peanut can be identified by 

a traditional protein detection method such as 

enzyme-linked immunosorbent assay (ELISA), which is 

based on the antigen-antibodies interaction (Platteau et al., 

2011; Scaravelli et al., 2008).  This method is very 

sensitive and the most commonly used by the industry 

and official food control agencies (Besler, 2001).  

However, sometimes peanut allergenic proteins are 

modified due to processing and may fail to detect the 

allergen protein (Immer, 2006; Taylor et al., 2009).  

Real Time Polymerase Chain Reaction (RT-PCR) is an 

alternative method in which the detection of allergens is 

made by means of DNA-based methods.  The target 

molecules, DNA sequences, are amplified by the 

RT-PCR.  For peanut allergen, several RT-PCR assays 



June, 2015      VIS/NIR spectral signature for the identification of peanut contamination of powder foods      Vol. 17, No. 2   311 

have been developed (Hird et al., 2003; Scaravelli et al., 

2008).  

López-Calleja et al. (2013), has recently reported the 

development of a real time PCR assay method for the 

detection of trace amounts of peanut in processed foods.  

This test was validated by means of peanut samples 

provided by the Institute for Reference Materials and 

Measurements (IRMM) of the European Commission, 

which consisted of peanut varieties samples from 

different geographical origins exposed to different 

treatments.  The authors have also demonstrated through 

RT-PCR that 27 out of 133 commercial food products 

contained peanut traces while they did not declare their 

presences in the labelling.  Still, the main drawback of 

RT-PCR is the requirement of skilled labour, while being 

time consuming and expensive as well. 

The application of spectroscopy to evaluate product 

quality offers potential improvements in cost-efficiencies 

compared to other analytical procedures, especially where 

non-destructive techniques can be adapted to in-line 

sorting and processing (Phan-Thien et al., 2011).  

Techniques using near-infrared (NIR) spectroscopy are 

being applied in food processing and quality inspection 

(Shiroma and Rodriguez-Saona, 2009), producing several 

advantages over conventional physical and chemical 

analytical methods for food quality analysis: NIR is rapid, 

non destructive, and achieves large information about the 

components present in food products (Coates et al., 2008; 

Mauer et al., 2009; Rubio-Diaz et al., 2011; Lembe et al., 

2013).  Spectra measured in the NIR range contain 

absorbance bands that are mainly due to three chemical 

bonds: C–H, which is usually from fats and oil; O–H 

bond which are found in water; and N–H bonds, which 

are found in protein (Cozzolino et al., 2008).  Shiroma et 

al. (2009) determined fat and moisture content of potato 

chips, achieving the differentiation of potato chips by 

source of frying oil.  NIR is ideal for quantitatively 

determining oil, protein and moisture by deducing C–H, 

N–H and O–H bonds (Cozzolino et al., 2008).  In 

addition, high scatter coefficients allow for excellent 

diffuse reflectance spectra of solids (Sundaram et al., 

2010).  NIR spectroscopy may be applied with minimal 

sample preparation and has been used to determine 

peanut fatty acid concentrations of individual peanut 

kernels (Tillman et al., 2005; Fox et al., 2006) and peanut 

oil (Panforda et al., 1990).  NIR has also been used to 

predict the total oil and fatty acid concentrations of 

peanut pods (Sundaram et al., 2009a; Sundaram et al., 

2009b).  Therefore, this very common analytical method 

is now being used in a more commercial aspect.  

Sundaram et al. (2010) reported that NIR reflectance 

spectroscopy is used to quantify the total amount of oil 

and fatty acid concentration of Virginia and Valencia 

types of in-shell peanuts.  In such work moisture content 

(MC) of intact kernels of grain and nuts could be 

determined by NIR reflectance spectrometry (Sundaram 

et al., 2012).  Regarding powder, full spectra (VIS-NIR) 

have also been accomplished for rapid and non invasive 

quantification of two adulterants (flour and mung bean) in 

spirulina powder (a dietary supplement) with a limit of 

detection of 10% in mass when using non-spatially 

resolved spectroscopy.  In such work three wavelength 

bands were identified as the most relevant: one in the 

visible and the other two in the near infrared range based 

on a PLS model (Wu et al., 2011).  

Hyperspectral imaging system (HIS) technique is a 

kind of spectroscopic vision system which provides 

information about spatial distribution, shape, texture, and 

mixture homogeneity.  Mixture homogeneity is essential 

with a view to obtaining products of a high quality and 

uniform content.  All mixing processes should ideally 

provide a “perfect mixture”, where all components are 

uniformly distributed in the mass.  In practice, this is 

usually very difficult, especially with powder mixtures, 

which can contain widely different components.  The 

type of mixer used can also affect the uniformity of the 

product (Rosas and Blanco, 2012).  The HIS imaging 

system has been used to monitor a powder flows leaving 

a dosing feeder, showing that changing the spatial 

resolution of the HIS enables to view the powder as either 
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homogeneous or heterogeneous (Scheiblhofer et al., 

2012).  HIS in the NIR region has already been used for 

process and quality monitoring in the pharmaceutical 

industry with special regard to assessing homogeneous 

distribution of dosage, which proves the concept to be 

ready for technology transfer towards the food industry 

(Gowen et al., 2008).  

According to previous work of the authors 

(López-Calleja et al., 2012), it is possible to segregate 

peanut, milk, and flour in powder under limited condition 

using hyperspectral vision in the range from 400 nm to 

1000 nm.  However，  it has not been proved the 

reliability of these results regardless the type and 

treatment of peanuts.  Therefore， the specificity of such 

procedure remains unrevealed.   

Hence, the goals of this work are: to identify the 

spectral range to segregate peanuts in powdered foods 

from other ingredients regardless treatment (no treatment, 

blanching and roasting) and to establish the spectral 

bands required for a multispectral system according to the 

sensitivity needed when using it as a complementary and 

screening technique for RT-PCR analytical tools. 

2  Materials and methods:  

2.1  References samples 

The reference peanut samples were obtained from 

European Commission Joint Research Centre of IRMM 

(Brussels, Belgium) and are the same as those used by 

López-Calleja et al. (2013) for the validation of RT-PCR 

method (Table 1).  The kit (IRMM-481) with six 

different vials contains non-salted peanut powder with a 

normal particle size from 500 µm to 1000 µm.  Five of 

the vials were filled with approximately 2 g of each 

variety and treatment: vial IRMM-481a (RPA), variety 

Runners and origin Argentina, corresponded to blanched 

peanuts air- roasted at 140
0
C for 20 min;  vial 

IRMM-481b (RPB) variety Common Natal from South 

Africa refers to raw peanuts, air roasted at 160
0
C for 13 

min; vial IRMM-481c (RPC) variety Virginia and origin 

from USA, were blanched peanuts, oil roasted at 145
0
C 

for 25 min; vial IRMM-481d (RPD) variety Virginia and 

origin from, China, also corresponded to blanched fruits, 

oil roasted at 140
0
C for 9 min; vial IRMM-481e (RPE) 

variety Jumbo Runners and origin from, USA, were 

blanched peanuts without roasting.  On the other hand 

vial IRMM-481f (RPF) was a mixture of all five peanut 

vials at the same ratio. 

2.2  Commercial samples 

Commercial samples of peanut (MP, MP1 and MP2), 

skimmed milk powder (MM), wheat flour (MF), and 

cocoa powder (MCC) were obtained from local market 

(Madrid, Spain). The manufactures of wheat flour, milk 

powder and cocoa were Nomen, Tarragona (Spain), 

Central Lechera Asturiana, Asturias (Spain) and Valor 

Repostería, Alicante (Spain) respectively (Table 2).  

In-shell peanut was widely commercially available in the 

market Madrid, Spain and manufactured by Itac China.  

Table 1  Five of the vials were filled with approximately 2 g of each variety and treatment 

Vail  

No. 

Variety of 

IRMM-484 

Variety 

symbol 

Variety 

name 

Origin aria  Correspond to 

peanuts 

Type of 

roasted 

Rate of Air roasted 

1 A RPA Runners Argentina blanched  Air 140 0C / 20 min 

2 B RPB Common 

Natal 

South Africa raw  Air 160 0C / 13 min 

3 C RPC Virginia USA blanched  Oil 145 0C / 25 min 

4 D RPD Virginia China blanched Oil 140 0C / 9 min 

5 E RPE Jumbo 

Runners 

USA blanched without - 

6 F RPF*      

* The vial IRMM-481f (RPF) was a mixture of all five peanut vials at the same ratio. 
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Food ingredients (MF, MM and MCC) were subjected to 

screening process to characterize particle size provided 

that according to the standard for wheat flour AOAC 

965.22 more than 98% MF must pass through the sieve of 

212 μm.

For the screening of MF, MCC and MM, a sifter was 

used: ARESA ORTO with 10 vibration rates, all employed 

sequentially upstream.  This device is provided with a 

battery of sieves calibrated at: 160 /125 /100 /80 /63 /50 

/40 µm.  For this study we selected the particle retained in 

the first and third sieves, respectively, so that the size of 

both samples corresponds to 212-160 µm and 125-100 µm.  

Commercial peanuts were crushed by mechanical grinder 

and two particle size considered: above 2000 µm and 

below 1000 µm.  All samples were analysed at two 

ranges of temperature 5°C-10°C and 19°C-25°C.  

2.3   Samples preparation 

Peanut samples were kept in an air tight container.  

The mass of each sample was 1 g, placed inside a round 

plastic container for the spectroscopic measurement.  

Material was pressed with a Chatillon (DISMAE, Model- 

DPP) to achieve 1.41 kg/cm
2
 (or 98 N with a 30 mm flat 

plate) (Figure 1). 

2.4  Spectroscopic instruments and measurements 

Extended visible (VIS) and near infrared (NIR) 

spectral measurements were performed using a 

Hamamatsu photonic multi-channel spectrometer (Japan): 

C7473 and PMA-1 respectively.  The optical system 

consisted of a bifurcated optical fiber, (Monolight Optical 

Spectrum Analyser, United Kingdom) that leads the 

incident light of a 100 W Tungsten lamp to the sample 

and reflected to the detector.

  

Table 2  Specification and characterization of commercial samples (MM, MF, MCC and MP) 
 

Product Brand Nutritional value / 100 g Grit, µm Temperature 

Milk powder 

(MM) 

Central 

Lechera 

Asturiana 

Asturias 

(Spain) 

Energy value: 2050 kJ 

Protein: 25 g 

Carbohydrates: 39 g 

Fat: 26 g 

Calcium: 1200 mg 

Sodium: 0.5 g 

212 > MM > 160 

and 

125 > MM > 100 

8ºC and 25ºC 

Wheat flour 

(MF) 

Nomem 

Tarragona 

(Spain) 

Energy value: 1426 kJ 

Protein: 9.5 g 

Carbohydrates: 72 g 

Fat: 1.1 g 

212 > MF> 160 

and 

125 > MF > 100 

5ºC and 19ºC 

Cocoa 

(MCC) 

Valor 

Alicante 

(Spain) 

Energy value: 1303 kJ 

Protein: 25.5 g 

Fat: 16 g 

Sugars: 0.7 g 

Sodium: 0.0128 g 

212 > MCC > 160 

and  

125 > MCC > 100 

8º C and 20ºC 

Peanuts 

(MP) 

Itac 

(China) 
 

MP < 1000 

and 2000 > MP 
5ºC and 19ºC 
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The detector of VIS and NIR equipment had 

wavelength ranges between 196-958 nm and 896 - 1686 

nm respectively.  The light source was focused on the 

sample in order to interact with it, and then the 

reflectance spectra was collected and recorded.  Each 

measurement averaged nine spectra and were repeated 

three times for varying integration times: visible spectra 

(VISS) from 20 ms to 40 ms and NIR from 50 ms to 80 

ms, and for the latter with two temperatures ranges as 

well: 5ºC-10ºC, and 19ºC-25ºC.  For VISS, relative 

reflectance spectra have been considered for further 

analysis; for that white reference (barium sulphate plate) 

and dark current spectra were taken before acquiring 

measurements of the samples, and then the relative 

reflectance was computed subtracting the dark current to 

each raw spectrum and dividing this result by the white 

reference minus the dark current spectrum.  For NIR, the 

raw spectra were considered, that is, the intensity level at 

each wavelength without considering the white reference. 

2.5  Hyper-Spectral Measurements 

A pushbroom hyperspectral camera (Hyperspec VNIR 

C-Series G4-131, USA) has been used with a wavelength 

range between 400-1000 nm.  It is equipped with a 

progressive line-by-line scan spectrograph with an 

interchangeable slit of 25 μm.  Hyperspectral imaging 

system (HIS) is surrounded by a rectangular tent made 

from black wood to prevent other lightning interference, 

and it is composed of the following components: an 

illumination unit which consists of a single halogen lamp 

adjusted at an angle of approximately 45° to illuminate 

the camera’s field of view (FOV); a sample conveying 

translation stage driven by a stepping motor with 

movement synchronized with the image acquisition by 

mean of the PC supported HyperspecTM software. 

Relative reflectance spectra were computed for each 

pixel.  The selected spectral resolution was 3.2 dpi (189 

wavelengths).  The setup of the camera allowed 

adjusting the size of the pixel at 69.7 μm ×69.7 μm.  

Hyperspectral images were used in this study in order to 

achieve a high number of spectra containing spatial 

variability; i.e. the images were considered such as a 

source of spectra, and the spatial information was not 

analysed in the present research.  Therefore, manually 

selected region of interests (ROI) from images were set 

for the spectral analysis of commercial peanut along with 

peanut references.  Similarly, ROI were manually 

selected on previous hyperspectral images (López-Calleja 

et al., 2012) of MF, MM and MCC (particle size in MF 

and MM between 125 µm and 100 µm, higher than 160 

µm in MCC) and MP that were included for spectral 

comparison and projection onto multidimensional models 

(Figure 2).  

 

Figure 1  Reference peanuts samples (RPA-RPF) and commercial peanut (MP) 
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2.6  Spectral data analysis 

VIS and NIR spectra were analysed by using 

multivariate data analysis software (Matlab R2011 with 

statistical toolboxes Natick, Massachusetts, U.S.A).  

Three sets of data were considered in this study as 

calibration:  

- HIS (400 -1000nm) with n = 8788 corresponding to 

RPA-F (n = 6670) and MP (n = 2118),  

- VISS (400 - 1000 nm) with n = 117 corresponding 

to RPA-F (n = 108) and MP (n = 9) 

-  NIR (896 – 1600 nm) with n = 1110, corresponding 

to RPA-F (n = 158), MP (n = 323), MM (n = 210), MF (n 

= 215), and MCC (n = 204).  

These three sets (Table 3) were used independently to 

perform three principal component analysis (PCA) in 

order to define the spectral response of the food 

ingredients.  

Beside, a fourth spectral HIS data set from a previous 

research (López-Calleja et al., 2012) composed by MF, 

MM, MCC and MP were projected onto 

multidimensional models computed with the HIS 

calibration set.

 

Figure 2  Particle size of commercial samples with hyper-spectral images.  Particle size: 125-100 μm 

and >160 μm (MM, MF and MCC); <1000 μm and >2000 μm (MP) 

 

Table 3  Calibration set of NIR, HIS and VISS 

 Number of reference peanut samples Number of commercial samples  

 RPA  RPB RPC RPD RPE RPF MP MM MCC MF TS* 

NIR 26 21 24 33 31 23 323 210 204 215 1110 

HIS 758 860 685 1548 1308 1511 2118 366 - 316 8788 

VSS 18 18 18 18 18 18 9 - - - 117 

*Total number of spectra. 
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PCA on HIS and VISS were conducted on centred 

data set to assess the feasibility of segregating peanut 

reference samples based on peanut processing: blanching 

and roasting, while PCA on NIR aims at defining specific 

wavelength ranges for the identification of peanuts 

regardless treatment.  Several spectral indexes were 

proposed to segregate the peanuts from the other powder 

foods.  These indexes were defined based on the spectral 

patterns and on the most relevant wavelengths selected 

from the loadings of PCA.  Several Analysis of Variance 

(ANOVA) were computed in order to compare the 

performance of each proposed index and the scores from 

PCA.  

Additionally, for each spectrum of the VISS and HIS 

data it was computed the sum of the relative reflectance at 

each wavelength such as a global measurement of the 

intensity level of the spectrum, it was called the spectral 

sum (SS).  Similarly, for the NIR data the spectral sum 

was computed for each spectrum.  The normalization of 

each VISS, HIS and NIR spectrum was carried out in 

order to avoid global scattering, dividing the intensity 

level of each wavelength of the spectrum by SS.  Then 

PCA was computed on these sets of spectra. 

3  Results and discussion  

3.1  Extented visible spectra 

The analysis of extended visible spectra obtained by 

the VISS and HIS are presented in this section.  At a 

first step some considerations are given with regard to 

relative reflectance spectra, followed by the results of 

principal component analysis.   

Figures 3  shows that all the average reflectance 

spectra of the VISS and HIS are very similar.  In both 

cases, the average reflectance spectrum from peanut RPE 

has higher reflectance in the visible range and it is well 

separated from the rest of the reference peanuts (RPA, 

RPB, RPC, RPD and RPF).  The peanut RPE 

corresponds to blanched peanuts (more white) without 

roasting, while the rest of peanuts are all roasted either 

from blanched or raw peanut. 

 

Figure 3a  Average relative reflectance spectra from VISS 

 

 



317   June, 2015                AgricEngInt: CIGR Journal Open access at http://www.cigrjournal.org          Vol. 17, No. 2 

Another important observation from the average raw 

spectra is that peanut RPD remains between peanut RPE 

and peanut RPA-RPF, which points to peanut RPD as an 

intermediate status, confirmed by it was blanched and 

roasted during only 9 min compared to the rest (mostly 

between 20 min and 25 min).  It has been reported that 

roasting treatment has an effect on peanut properties like 

moisture and hexanal compound which are responsible 

for colour and flavour (Macdeniel, 2011).  This type of 

physical or chemical properties has been changed in our 

peanuts also due to the different blanching and roasting 

treatment.  

PCA performed on HIS data of reference and 

commercial peanut samples showed that PC1 represents 

99.31% variance of the relative reflectance spectra.  The 

determination coefficient (r
2
) between PC1 scores and 

spectral sum (SS) is 96.3% which indicates that almost 96% 

of total spectral variance is due to the global intensity of 

the relative reflectance spectra.  

In spite of the plane PC2 / PC3 retains only 0.64% of 

total variance, PC2 and PC3 scores are particularly 

explicative for the quality or treatment of the product 

while PC1 is related to the signal intensity of the relative 

reflectance spectra.  

As it expected, the normalization procedure corrected 

the scattering effect and consequently PC1 and PC2 of 

the normalized spectra were directly related to treatments 

of peanuts (PC1 and PC2 retained 98.83% of the total 

variance).  

In the same way PCA was performed on VISS data of 

reference and commercial peanut samples; PC1 

represented 94.2% of the variance of the relative 

reflectance spectra and the determination coefficient (r
2
) 

between PC1 and SS is 99.54%.  

Figure 4 shows the loadings of PC2 and PC3 obtained 

from the PCA performed on HIS and VISS non 

normalized spectra of reference and commercial peanut 

samples. Vertical lines indicate the most relevant 

wavelengths corresponding to highest loads values.  A 

very high correspondence is found between the principal 

component generated from VISS and HIS as expected, 

since the spectral range is similar in both cases.  The 

most relevant wavelengths (those with maximum and 

minimum loading values) are highlighted by vertical lines: 

 

Figure 3b  HIS; labels RPA to RPF correspond to IRMM 481 kit for peanuts. 
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469 nm, 550 nm, and 650 nm, all of them related to 

colour of the sample.  

 

Figure5 shows PCA based on hyperspectral data (400 

-1000 nm) for segregation of reference peanuts and 

commercial peanut based on processing treatments 

(blanching and roasting). Labels RPA to RPF correspond 

to IRMM 481 kit for reference peanuts and MP to 

commercial. PC2 and PC3 scores of non-normalized 

(Figure 5a) and PC1 and PC2 scores of normalized HIS 

(Figure 5b) showed similar pattern and allow segregating 

between RPA-F and along with MP, which suggests the 

convenience of the performed normalization.  Both 

planes of scores are situated in an orthogonal pattern 

which refers to the existence of unrelated factors, in this 

case raw material, roasting and blanching treatments.  

Thus, peanut RPB (IRMM-481B) is the only raw material 

and is clearly segregated from the rest, as it happens with 

peanut RPE (IRMM-481 E) which is blanched without 

roasting.  The commercial peanut spectra labelled as MP 

were projected onto the planes PC2/PC3 (non-normalized) 

and PC1/PC2 (normalized) generated with the HIS 

spectra of reference peanut samples, and it can be 

observed that it overlays on IRMM-481 RPD which 

origin is from China, aspect that is also confirmed from 

the product information in the commercial sample.  A 

major conclusion from this graph is that there are 

significant differences in the visible spectra among 

peanuts due to blanching and roasting treatment which 

makes it difficult to develop a universal segregation 

 

Figure 4 PC2 and PC3 loadings according to HIS and VISS; PCAs computed on peanuts. 

 

 

Figure 5a HIS score plots of PC2 vs. PC3 of non-normalized spectra 
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procedure based on the visible region of the spectrum.  

Figure 6 shows the projection of spectra data (MF, 

MM and MP) from a previous research work of the 

authors López-Calleja et al. (2012) into the PC plane 

generated with non normalized spectra of reference and 

commercial peanut samples.  PC2 and PC3 scores do not 

allow differentiating among MM (cyan colour n = 366), 

and MF (black colour n = 316), being also mixed with 

some reference peanuts (blue points, n = 8788 calibration 

data set) mainly blanched samples (IRMM-481, RPE).  

The MP from previous research (red colour n = 2118) 

overlay on the mixed peanut region as expected.  The 

wide variability in previous experiment could be related 

to the use of totally un-pressed and disperse powder 

particle.  A major feature extracted from Figure 6 is that 

PC2 and PC3 scores from VISS do not provide enough 

information to segregate MF and MM from all types of 

peanut samples (RPA-F/MP) and thus other spectral 

ranges are investigated, in this case NIR 896 – 1686 nm.  

Analogously, it was performed the projection of the 

corresponding normalized spectra of the same food 

samples onto the plane PC1 vs. PC2, and similar 

distribution and results were obtained (data not shown).

 

Figure 5b HIS score plots of PC1 vs. PC2 normalized spectra 

 

 

Figure 6 PC2 vs PC3 score plot of the non-normalized spectra of HIS validation dataset 
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3.2  NIR spectra  

As for extended visible spectra, this section is divided 

into considerations about raw spectra and principal 

component analysis performed on both reference and 

commercial samples. Some considerations are also given 

regarding to the definition of a spectral index. 

Figure 7 shows average NIR raw spectra for each food 

ingredient.  The average spectrum of MM appears 

clearly differentiated from the rest ingredients spectra in 

the range comprised between 1150 nm and 1700 nm.  

The raw spectra of all types of peanuts (RPA-RPF) show 

a clear valley around 1200 nm, which is related to one of 

the absorption peaks of lipids (Tsai et al., 2001), while 

the average spectra of MM, MF and MCC do not present 

such absorption band.  The MM presented a high 

reflectance value at 1200 nm; this observation is 

congruent with the fact that is skimmed milk. 

3.2.1  Spectral index based on NIR spectra 

Considering the NIR spectral patterns observed and 

previously comented, a spectral index (SI) based on 

several wavelengths around 1200 nm was proposed in 

order to segregate between a) MF, MM, MCC and b) MP, 

RPA-F.  Equation (1) is a linear combination of 1141 

nm, 1207 nm and 1250 nm, which is an approximation to 

the depth of the absorption peak at 1207 nm (Equation 1). 

SI = R1141+R1250- 2R1207 (1) 

Figure 8 shows the values of the SI with regard to the 

spectral sum (SS).  SI allows segregating between MM, 

MF, MCC and peanuts (RPA-F or MP), but it shows to be 

largely affected by SS, which refers to the total global 

intensity of the spectra.  Therefore, it is also interesting 

to compute a normalized spectral index (NSI) dividing by 

SS to correct the global scattering effect.  

  

 

Figure 7  Raw average NIR spectra for different food ingredient 
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Considering the multiple comparisons of means for SI 

and NSI taking into account the ingredients and the 

integration times, it was observed that, generally both 

indexes distinguish between MM, MF, MCC and RPA-F 

or MP.  In the case of SI, the differences are more 

accentuated for high integration time (80 ms), while for 

50 ms the values of MF and some of the peanuts present 

overlap (data not shown).  In NSI, also some differences 

between types of peanuts could be found but in general, 

they are not significant.  Regarding NSI, the effect of the 

integration time has been removed; the same value of NSI 

was obtained for each ingredient for all the integration 

times.  Within the peanuts (that appear very separated of 

the rest of the ingredients) two groups can be 

distinguished RPA, RPB and RPC, with low NSI values, 

and RPD and RPE with high NSI values, while RPF 

shows an intermediate position, which is expected since 

RPF is a mixture of all the previous samples; so far, we 

do not find the features that share RPA, RPB and RPC 

compared to RPD and RPE (considering treatments and / 

or origin).  Similar finding will be further discussed with 

the spectral indexes generated from PCA in Figure 13. 

 3.2.2  Principal components 

PCA were also been performed on non-normalized 

and normalized NIR spectra.  As in previous cases for 

non-normalized spectra, PC1 is mainly related to the 

intensity level of the raw spectra (SS) while PC2 and PC3 

scores provide the features for segregating among food 

materials.  PC1 represent 99.37% of total spectral 

variance.  The determination coefficient (r
2
) is 98.9%, 

which means that SS explains almost 99.4% of total 

spectral variance (Figure not show).  PC2 and PC3 

represented 0.58% and 0.03% of the spectral variance 

respectively.   

When looking at the NIR spectral loadings for PC2 

and PC3 (Figure 9) a very large contribution of 

1207-1210 nm is found.  Wavelength 1145 nm and 1259 

nm provide intersection points between the loading 

curves of PC2 and PC3 which are very closed to zero 

loading value.  This fact points to the possibility of 

using such spectral wavelengths, for base line correction 

and therefore it is decided to compute another spectral 

indexes (SI2 and NSI2) based on wavelengths 1145 nm, 

1207 nm, 1210 nm and 1259 nm (Equation 2).  The 

wavelengths selected based on PC loadings are highly 

congruent with those addressed by an expert eye on the 

raw NIR spectra (mentioned above).  

SI = R1145+R1259-R1207-R1210  (2) 

 

 

 

Figure 8 Values of SI (Y-axis) vs. SS (X-axis) 
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Figure 10a, corresponding to PC2 and PC3 scores, 

clearly segregates RPA-F and MP (unfilled markers) 

from the rest of the food ingredients MM, MF and MCC 

(bold), with little distance among peanut types (RPA-F to 

MP).  This fact is very relevant showing that NIR is far 

less sensitive to differences among peanuts in comparison 

to visible spectra, while enlarging distances with other 

food ingredients.  Also in Figure 10a shows all food 

stuff scores are allocated in radios of the circle, where 

length of the radios increase correspond to higher 

integration time.  Scores for the different substances 

corresponding to high integration time are more separated 

one another, and therefore exhibiting higher segregation 

power.  This fact shows that PC2 and PC3 are still 

affected by the global intensity of the spectra, justifying 

the normalization of spectra before the computation of 

PCA.  Arrows in Figure 10a indicate the projection of 

the spectral indexes: SI, SI2, NSI, NSI2 onto the 

PC2-PC3 plane, and show to be clearly aligned with 

peanuts, as opposite to the rest of ingredients. 

As it was expected, the normalization procedure 

corrected the scattering effect and consequently PC1 and 

PC2 of the normalized spectra were able to segregate 

peanuts from the other foods.  The corresponding scores 

(Figure 10b) showed some similarities with PC2 and PC3 

scores of non normalized spectra.  PC1 (of normalized 

spectra) discriminated between MM and the rest of foods, 

while PC2 segregated MCC and MF from the other 

ingredients.  It could be observed some effects due to 

integration times: scores of MM, MCC and MF are 

distributed along the diagonal of PC1-PC2 plane.

  

 

Figure 9  PC2 and PC3 loadings for NIR spectra. 

 



June, 2015      VIS/NIR spectral signature for the identification of peanut contamination of powder foods      Vol. 17, No. 2   323 

Results of the multiple comparisons of means applied 

to the scores of PC2 and PC3 (corresponding to 

non-normalized spectra) are included in Figure 11.  PC2 

scores are able of segregating MM from the rest of the 

food ingredients; while PC3 scores (Figure 11b) 

distinguish three groups: 1) MCC, 2) MF and 3) RPA-F 

and MM.  Scores values of both PC are affected by the 

integration time, as explained before.  None of both 

PC’s alone is able to segregate peanuts from the rest 

foodstuffs.  Figure 12 shows the results of multiple 

comparisons applied to scores of PC1 and PC2 of the 

normalized spectra.  Regarding segregation of foods it 

could be observed similar behaviours between PC1 of 

normalized spectra and PC2 of non-normalized spectra, 

and PC2 (normalized spectra) and PC3 (non-normalized 

spectra). 

Figure 13 includes the results of multiple comparisons 

for SI2 and NSI2, showing a similar behaviour than SI 

 

Figure 10a Representation of PC2 (X-axis) vs. PC3 (Y-axis) scores of the food ingredients spectra 

 

Figure 10b Representation of PC1 (X-axis) vs. PC2 (Y-axis) scores of the food ingredients spectra 
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and NSI (discussed in previous paragraph).  It can be 

found that the segregation performance of SI2 is affected 

by the integration time (Figure 13a), while such effect 

disappears in NSI2 (Figure 13b).

 

(a) 

 

(b) 

Figure 11 Multiple comparisons of scores of PC2 (a) and PC3 (b) from NIR PCA categorized by food 

ingredient (MM, MF, MCC and IRMM 481 RPA–RPF) and integration time (50 ms, 60 ms, 70 ms and 80 

ms).  The points represent the mean value and the horizontal lines the range considering the standard error 

of the mean. 
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(a) 

 
(b) 

Figure 12 Multiple comparisons of scores of PC2 (a) and PC3 (b) from normalized NIR PCA categorized by 

food ingredient (MM, MF, MCC, IRMM481 RPA–RPF peanuts) and integration time (50 ms, 60 ms, 70 ms 

and 80 ms).  The points represent the mean value and the horizontal lines the range considering the standard 

error of the mean. 

 



326    March, 2015         AgricEngInt: CIGR Journal Open access at http://www.cigrjournal.org                 Vol. 17, No. 2  

3.2.3  Discrimination performance of indexes 

Analysis of variance have been performed on SI, NSI, 

SI2 and NSI2 regarding the ingredient type with only two 

groups (peanuts and the rest of the ingredients) and 

computed for two extreme integration times (50 ms and 

80 ms; Table 4).  SI and SI2, non normalized indexes, 

show more discrimination ability for high integration 

time (F= 860 and 969 respectively) than for low (F= 223 

and 207).  SI2 is more sensitive to integration time than 

SI.  However, for normalized indexes (NSI and NSI2) 

the F values are similar for both integration times (Table 

4).  For high integration times the separation between 

the two groups of foodstuffs is higher with the non 

normalized indexes compared to the normalized one, 

 

(a) 

 

(b) 

Figure 13 Multiple comparisons of SI2 (a) and NSI2 (b) categorized by food ingredient (MM, MF, MCC, 

IRMM481 RPA–RPF peanuts) and integration time (50 ms, 60 ms, 70 ms and 80 ms).  The points 

represent the mean value and the horizontal lines the range considering the standard error of the mean. 
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which could be due to a decrease in the signal / noise 

ratio for the normalized indexes.  However, the 

normalized indexes would allow removing the 

uncontrolled variability of light that can appear along 

experimental works. 

4  Conclusions: 

VIS-NIR spectra were studied for the characterization 

of a wide variety of reference peanuts (Kit IRMM 481a) 

in comparison to powder food materials: MF, MM and 

MCC, in order to define a specific spectral index robust 

against pre-treatment (raw or blanched) and roasting 

(various temperatures and treatment duration).  

Visible range allows classifying reference peanut 

samples and shows orthogonal influences of 

pre-treatment: roasting and blanching.  

The projection of the spectra of powder food materials 

such as MF and MM with a granulometry from 100µm to 

160 µm, allows confirming that blanched peanuts cannot 

be distinguished from other food ingredients in the visible 

range, and thus other spectral ranges (NIR) were 

inspected.  A specific band for peanut identification with 

regard to MF, MM and MCC powder has been found 

centred at 1200 nm that corresponds to a band of lipids 

absorption.  Therefore, spectral indexes based on the 

combination of three wavelengths around 1200 (1141 nm, 

1200 nm and 1250 nm) are proposed and compared.  

Once the indexes are proposed a much cheaper system, 

multispectral, could be employed in order to compute the 

false colour images of indexes and to attain a screening 

system that would operate in conjunction with a RT-PCR 

procedure.  In order to quantitatively assess the nature of 

powder mixtures at a ppm level, based on powder size 

and ingredient nature, a proper combination of spatial 

resolution (70 µm) and field of view size (above 70000 

µm
2
 to inspect above 1 M particles), together with 

spectral range (only NIR seems to be enough sensitive 

and specific) has to be validated, making profit of 

chemometric and image texture analysis tools.  
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