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ABSTRACT 

 

In part (I), of this series of drying papers on solar drying of Roselle (karkade), statistical 

analyses on twelve thin-layer drying model, proved the superiority of logarithmic model. This 

part (II) investigated the effects of the drying conditions on the drying constant (k), coefficients, 

and drying rate. In addition, validation of the model as well was presented. The rate constant (k) 

was highly affected by the drying temperature. It was increased linearly with the temperature. 

Air velocity had, to lesser extent influenced (k). Coefficient (a) showed a positive relation with 

both drying-air temperature and velocity. In contrast to coefficient (a), parameter (c) was 

showed an inverse relation with the drying temperature and a moderate dependence on the air 

velocity. The drying rate was highly influenced by the drying temperature. Raising the 

temperature increased the drying rate. Furthermore, two criterions were applied to validate the 

developed model. 

 

Keywords: Roselle, drying constant, coefficients, rate; logarithmic model, model validation 

 

1. INTRODUCTION 

 

Drying is a complex thermal process in which unsteady heat and moisture transfer occur 

simultaneously (Sahin & Dincer, 2005). Drying is not only affects the water content of the 

product, but also alters other physical, biological and chemical properties such as enzymatic 

activity, microbial spoilage, viscosity, hardness, aroma, flavor and palatability of the foods 

(Barbosa-Canovas & Vega-Mercado, 1996; O¨zbek & Dadali, 2007). The drying kinetics of food 

is a complex phenomenon and requires dependable models to predict the drying behaviour 

(Kingsly & Singh, 2007). Madamba et al., (1994) stated that mathematical modelling and 

simulation are often used to study the drying process, validate mechanisms, and optimize the 

operating parameters and conditions. They are also used for designing new or improving existing 

drying systems or even for the control of the drying process. The drying constant k is the most 

suitable quantity for purposes of design, optimization, and any situation in which a large number 

of iterative model calculations are needed. On the other hand, the classical partial differential 

equations, which analytically describe the four prevailing transport phenomena during drying 

(internal-external, heat-mass transfer), require a lot of time for their numerical solution and thus 

are not attractive for iterative calculations (Krokida et al., 2004). Many mathematical models 

have been proposed to describe the drying processes; though, thin-layer drying models are 

widely used (Doymaz, 2007). The models have to be sufficiently accurate, capable of predicting 
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the water removal rates and describing the drying performance of each particular product under 

common drying conditions. Semi-theoretical models are derived directly from the general 

solution of Fick’s law by simplification. The empirical models are derived from statistical 

relations. They directly correlate moisture content with time, having no physical connection with 

the drying process itself (Babalis et al., 2006). These types of models (empirical and semi-

empirical) are valid in the specific ranges of temperature, air velocity, and humidity for which 

they are developed. These thin-layer drying equations contribute to the understanding of the 

drying characteristics of agricultural materials (Midilli & Kucuk, 2003), prediction of the drying 

time; for generalization of drying curves (Goyal et al., 2007). In part (I) of this work, statistical 

analysis proved the superiority of the logarithmic model to the others. Consequently, the 

objectives of the present section are to study the effects of the drying conditions on the drying 

constant, drying coefficients, and drying rate; and to validate the developed logarithmic model. 

 

2. MATHEMATICAL MODELING 

 

2.1 Thin-layer drying models: twelve thin-layer drying models, namely,  Newton, Page,  

Modified Page,  Modified Page II, Henderson and Pabis, Modified Henderson & Pabis, 

Logarithmic, Simplified Fick’s diffusion, Two-term, Two-term exponential, Verma et al., and 

Diffusion approach were presented in part (I). In addition, the statistical measures of goodness 

of-fit were also given.  

 

2.2 Moisture content (MC) on dry basis (%) (Ceylan et al., 2007; Saeed et al., 2008a) is given 

by:  

        (1) 

 

 

2.3 Moisture ratio (MR) (O¨zbek & Dadali, 2007; Shivhare et al., 2000; Saeed et al., 2008b) 

is given by:  

 

   (2) 

 

 

2.4 Drying rate (Ceylanl et al., 2007; Doymaz, 2007; Saeed et al., 2008b) is given by:  

 

            (3) 

 

 

2.5 Logarithmic model (Togrul & Pehlivan, 2002; 2003; Wang et al., 2007) is given by:  

 

                                                            MR = a. exp (-c (t/L
2
))       (4) 
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3. DRYING EXPERIMENTS 

 

Thin-layer drying experiments with Roselle were carried out in a solar-assisted dehumidification 

drying-system for drying agricultural products. A flat-plate solar collector was used (five panels 

connected in parallel, 9.86m
2
). In addition, auxiliary electric air-heaters are used. A cabinet-type 

drying chamber is used (100cm ×100cm ×240cm L, W, and H). Moreover, the distance between 

the shelves can be adjusted to different heights. The configuration of the system’s components is 

shown in Figure 1. Dry and wet bulb temperatures were measured online using T-type 

thermocouples (-270
o
C to 400

o
C). The solar radiation is measured using Eppley pyranometer 

(model 8-48 Eppley Radiometer, the Eppley Laboratory, USA). The thermocouples and the 

pyranometer were connected to Fuji Micro-jet recorder (type PHA, Fuji Electric Co., Ltd, Tokyo, 

Japan). Digital thermometer-anemometer-data logger device (model DTA4000, Pacer Industries, 

Inc., USA), was used to measure the drying air velocity (accuracy of ±0.2% and 1.0% for 

temperature and air velocity). Water flow rates are measured by Aalborg WF-meters (Aalborg 

instruments and controls, NY, USA), 3.4-45l/min, with ±5% accuracy, and 100psi max working 

pressure. Two silica gel columns were used alternatively for the dehumidification and 

regeneration processes (25cm ×25cm ×125cm: L, W, and H), the silica gel height is about 85cm 

(42.5 kg silica gel/column). A digital balance (Shimadzu; model UX2200H, Capacity of 2200g, 

readability of 0.01g; from Shimadzu Co., Japan) was used to weigh Roselle samples. The data 

was recorded to personal computer at 5minutes. A convective oven (Venticell, MMM, 

Medcener, Germany) was used to determine the initial and final moisture content at 105°C (Ruiz, 

2005). Five average temperatures (35, 45, 55, 60, and 65°C) and two average air velocities (1.5 

and 3.0m/s) were considered. An approx. 10 kg of fresh Roselle’s calyces (variety Arab) was 

used in each run. The seed capsules were removed before commencing the drying experiments. 

Samples of ≈0.2 kg of whole (uncut) Roselle’s calyces were suspended to digital balance. Fresh 

and dried Roselle is shown in Figure 2. Twelve thin-layer drying models were fitted to the 

experimental data using non-linear regression based on the minimization of the sum of squares; 

using least squares Levenberg-Marquardt algorithm (Doymaz, 2007; Saeed et al., 2006; 2008a). 

The method was used to find the best-fit model to describe the solar-drying behavior of Roselle.  

 

 

4. RESULTS AND DISCUSSIONS 

 

As it was shown in part (I), the drying air temperature was the main factor affected the solar-

drying kinetics of Roselle. The drying air velocity had a little effects on the drying processes 

compared to that of air temperature. Moreover, the results of statistical analysis showed the 

goodness of logarithmic model to describe the drying behaviour of Roselle. This part (II) 

discusses the effects of the drying variables on the drying constant (k), drying coefficients, and 

the drying rate, as well as, validation of the developed drying model.  
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Figure 1. Regeneration (column A) and dehumidification (column B) 

 

     
Figure 2. Fresh (left) and dried Roselle (right) 

 

 

3.1 Observed and predicted moisture content 

 

The Roselle’s calyces (karkade) were dried from average initial moisture content of 9.88db to an 

average final moisture content of 0.19db. Figure 3 present the plotting of the observed (MRobser.) 

and predicted (MRpred) moisture contents, against the drying time (min), at different drying 

conditions. Where, the moisture content is expressed as dimensionless moisture ratio (MR). It 

was obvious that the logarithmic model predict well the drying curves of Roselle, as the lines of 

the observed and predicted data were identical for the most of the drying time. The model was 

found satisfactorily described the drying behaviour of several agricultural products. For 

examples, drying of rosehip (Erenturka et al., 2004); thin-layer drying kinetics of plum (Goyal et 

al., 2007); solar drying of shelled and unshelled pistachios (Midilli & Kucuk, 2003); drying of 

hull-less seed pumpkin (Sacilik et al., 2007); thin-layer solar drying of Sultana grapes (Yaldiz et 

al., 2001). 
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3.2 Drying constants and coefficients 

 

Table1 presents the constants and coefficients resulted from statistical analyses on twelve drying 

models. It is showed the average values produced by different models. The average values of the 

whole models were 0.0020, 0.0008, -0.0025, 1.0173, 0.8938, 0.2263, -0.0241, 0.0305, 0.0013, 

and -0.8742, for k, k0, k1, n, a, b, c, g, h and l, respectively. 
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Figure 3a. MR obser. and MRpred vs. time at 35°C (left: 1.5m/s; right: 3.0m/s) 
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Figure 3b. MR obser. and MRpred vs. time at 45°C (left: 1.5m/s; right: 3.0m/s) 

 

 

The values of (k), (a), and (c) resulted from fitting of logarithmic model, at different drying air 

conditions, were presented Table 2. The average values of the drying constant k and coefficients 

(a) and (c) obtained from logarithmic model were 0.000783, 1.008733 and -0.026738, 

respectively. The values are in agreed with other researcher’s findings, e.g. drying of kiwi: a = 

1.10600, c = -0.07579, avocado: a = 1.06874, c = -0.06075, banana: a = 0.98749, c =-0.02023 

(Ceylanl et al., 2007). However, some authors obtained higher values, as examples, solar drying 
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Figure 3c. MR obser. and MRpred vs. time at 55°C (left: 1.5m/s; right: 3.0m/s) 
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Figure 3d. MR obser. and MRpred vs. time at 65°C (left: 1.5m/s; right: 3.0m/s) 

 

of hull-less seed pumpkin: k = 0.1508, a = 0.9088, c = 0.0939 (Sacilik et al., 2007); solar drying 

of apricots: k = 0.02399, a = 1.0185; c = -0.09565 (Togrul & Pehlivan, 2002); drying of single 

apricot: k = 0.0035, a = 1.0984, c = -0.0926 (Togrul & Pehlivan, 2003); drying of figs: average 

values k = 0.049425, a = 1.021977, c = -0.03416 (Xanthopoulos et al., 2007); drying of apple 

pomace k = 0.00298, a = 2.112955, c = -1.068815 (Wang et al., 2007). 

 

3.3 Effects of drying conditions on the drying constant and coefficients 

 

3.3.1 Drying constant (k) 

 

Drying constant data in the literature are scarce due to the variation in composition of the 

materials and the variation of the experimental conditions (Krokida et al., 2004). The drying-air 

temperature was greatly influenced (p = 0.004) the drying rate constant.  
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Similar result was reported by others (Tarigan et al., 2007). As the drying temperature is raised 

from 35°C to 65°C, the values of the drying constant were increased from 4.27 x 10
-4

 to 1.24 x 

10
-3

. On the other hand, drying air velocity has less influence on the drying constant. Similar 

result was found by Pangavhane et al., (1999); Rapusas & Driscoll, (1995). 

 

Table 2. Drying constant k, coefficients (a) and (c) resulted from fitting 

             of logarithmic model at different drying conditions 

T (°C) Air vel. (m/s) k a c 

35 

1.5 0.000338 0.999396 -0.018150 

3.0 0.000516 0.939910 -0.010500 

45 

1.5 0.000532 0.993992 -0.025240 

3.0 0.000713 0.959027 -0.001660 

55 

1.5 0.000803 1.051420 -0.055990 

3.0 0.000873 1.011140 -0.023700 

65 

1.5 0.001253 1.064960 -0.044690 

3.0 0.001232 1.050020 -0.033970 

 

Figure 4a shows plotting of the drying constant against the drying-air temperature at different air 

speeds. The linearity of (k) is obvious with the drying air temperature (r
2 
= 0.965). Several 

investigators correlated the drying constant (k) with the air temperature (Panchariya et al., 2002; 

Simal et al., 2005; Togrul & Pehlivan, 2003). The results of correlation of (k) with the 

temperature were given as follows: 

 T0.00003016  0.00902-  k  1.5  r
2 
= 0.964      (5) 

T0.00002308  0.00663-  k 3.0   r
2 
= 0.966          (6) 

Furthermore, the two set of the data points representing the values of (k) at 1.5m/s and 3.0m/s air 

velocities were coincides each other indicating that the effect of air velocity is small (p =0.697) 

compared to that of air temperature. However, (Jayas et al., 1991) concluded that air velocity 

significantly affected (k). Nevertheless, drying at 3.0m/s resulted in a little tad high values of (k) 

than that of 1.5m/s (Figure 4a). 

 

Moreover, two Arrhenius models were used in the literature to relate the dependence of the 

drying rate constant on the drying-air temperature. According to (Azzouz et al., 2002) the drying 

constant is a function of the absolute temperature of the grain, and it could be described with an 

Arrhenius type of equation. This relationship is represented by the following equations: 

 

 (7) 

 

(8) 

 

  

  

 

R.T) / Eexp( k k 0

T) / exp(-BA   k 
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Figure 4a. Drying constant (k) vs. temperature (°C) 

 

Where in equation 7 (Gupta et al., 2002) and equation 8 (Shivhare et al., 2000, Tarigan et al., 

2007): k0, E, R, A, and B are coefficients, k is the drying constant (min
-1

), and T is the 

temperature (K). Figures 4b and 4c show the Arrhenius plots relating the drying constant and the 

inverse of the absolute temperature. The fitting was performed using equation (7) and (8), 

respectively: 

 

k = (83.2301) exp(-(0.0000644)/(0.0000000171)T) (R
2
 = 0.995)  (9) 

k = (0.00000000751) exp (-(-.03551)/T)   (R
2
 = 0.997) (10) 

   

The values of R
2 
from equations (9) and (10) are higher compared to previous works on different 

products (drying of unshelled kernels of candlenuts: stored = 0.976 and fresh = 0.98 (Tarigan et 

al., 2007). 
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Figure 4b. k vs. temperature (K): eq. (4)              Figure 4c. k vs. temperature (K): eq. (5) 
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3.3.2 Coefficient (a) 

 

The coefficient (a) was found to have a positive relationship with the drying temperature; it was 

increased linearly with the drying temperature (p=0.093). Figure 5 shows how the drying 

conditions effects coefficient (a).  The equations of straight-line fitting generated high value for 

r
2
 = 0.973 at air velocity of 3.0m/s compared to 0.831 for 1.5m/s. This indicated that the linearity 

enhanced with higher air velocity. The equations are given as: 

 

a1.5 = 0.90038200 + 0.00254120T (r
2
 = 0.831)    (11) 

a3.0 = 0.79880275 + 0.00382443T (r
2
 = 0.973)    (12) 

 

3.3.3 Coefficient (c) 

 

Coefficient (c) was generally showed an inverse relation with the drying temperature. Figure 6 

presents the plotting of the values of coefficient (c) with temperature at different air velocities. 

The linear fitting to the values resulted in the following equations: 

 

c1.5 = 0.0191675 - 0.0011037T (r
2
 = 0.670) (10) 

c3.0 = 0.0287675 - 0.0009245T (r
2
 = 0.701) (11) 

   

Compared to (k) and (a), parameter (c) showed a moderate dependent on both drying-air 

temperature (r
2
 =0.778 and p =0.258) and air velocity (r

2
 =0.670 at 1.5m/s and r

2
 =0.701 at 

3.0m/s, with p=0.150). The three parameters, i.e. k, a, and c of the logarithmic model were not 

behaved in the same manner; as (Jayas et al., 1991) also concluded that it is not necessary all the 

coefficient increase or decrease at the same time. 
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Figure 5. Coeff. (a) vs. drying conditions          Figure 6. Coeff. (c) vs. drying conditions 
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3.3.4 Drying rate 

 

The drying rate (DR) of Roselle was highly influenced by drying air temperature. It was 

increased with the increment of the drying-air temperature, similar result was observed by others 

(Saeed et al., 2008a; 2008b). This is due to the increase of the heat supply rate to the product, 

hence, acceleration of water migration inside the product at higher temperature (Belghit et al., 

2000; Kouhila et al., 2002; Krokida et al., 2004). In addition, several authors reported that drying 

rates increases with the increment of the temperature for drying of various products; such as 

drying of pumpkin (Akpinar et al., 2003); okra (Doymaz, 2005); pumpkin slices (Doymaz, 

2007); eggplant (Ertekin & Yaldiz, 2004) and garlic (Madamba et al., 1996). It is observed that, 

during the drying processes some crops have a tendency to form dry surface layers (Ekechukwua 

& Nortonb, 1999) which are impervious to subsequent moisture transfer if the drying is very 

rapid. (Janjai & Tung, 2005) reported that Roselle’s calyxes have a natural wax coated on their 

surfaces. This wax prevents most of the migration of moisture from the inside into drying-air. 

After the surface is dried the wax is broken, and the moisture from inside can be easily released, 

thus increasing the drying rate. Furthermore, at the end of the drying, the drying rate is very slow 

because most of water to be evaporated is in the monolayer or multi-layer water with a high 

binding energy. Figures 7 present the drying rates of Roselle at different drying conditions. The 

drying rates at temperature 35°C and 45°C showed a “zigzag-like” form. This might be attributed 

to the subsequent development and cracking of the hard layers. Besides, the fluctuation of the 

dryer’s inlet air properties that coincides with the alternative dehumidification and regeneration 

processes of the silica gel columns. 
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Figure 7a.  Drying rate (DR) at 35°C (left: 1.5m/s; right: 3.0m/s) 

 



12 

 

Imad Eldin Saeed. Solar Drying of Roselle (Hibiscus Sabdariffa L.) Part II: Effects of Drying 

Conditions on the Drying Constant and Coefficients, and Validation of the Logarithmic Model “. 

Agricultural Engineering International: the CIGR Ejournal. Manuscript 1488. Vol. XII. March, 

2010. 

 

 

0 1000 2000 3000 4000 5000 6000

Drying time (min)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

D
ry

in
g

 r
at

e 
(g

 w
at

er
/ 

m
in

)
(45°C, 1.5m/s)

  

0 1000 2000 3000 4000 5000

Drying time (min)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

D
ry

in
g

 r
at

e 
(g

 w
at

er
/ 

m
in

)

(45°C, 3.0m/s)

 
Figure 7b.  Drying rate at 45°C (left: 1.5m/s; right: 3.0m/s) 

 

For drying at higher temperatures (55°C and 65°C), the phenomenon occurred at shorter time 

intervals and the data points appear nearly as continuous lines. High temperature increases the 

heat content, as well as the saturation humidity of the drying air. Moreover, at higher 

temperatures drying rates increased because of increasing equilibrium concentration of the water 

vapour on the surface of the drying material (Togrul & Pehlivan, 2003). However, very high 
temperatures or drying air rates may cause some shrinkage and deterioration of the material’s 

skin. Moreover, researchers generally agreed that air velocity during thin-layer drying of grains 

has a little affect on the drying rate (Iguaz et al., 2003; Jayas et al., 1991).  
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Figure 7c.  Drying rate at 55°C (left: 1.5m/s; right: 3.0m/s) 
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Figure 7d.  Drying rate at 65°C (left: 1.5m/s; right: 3.0m/s) 

 

Figures 8 show the plotting of the drying rate (DR) vs. MR at different drying conditions. Higher 

drying rates were occurred at high moisture levels (Guine´ et al., 2007). The rates, then, tend to 

towards approximately zero at the end of the process, since at this stage, the moisture content 

diminishes and the water removal becomes negligible. Higher temperatures of the drying-air 

produced higher drying rates and hence the moisture ratio is decreased (Belghit et al., 2000; 

Kouhila et al., 2002). On the other hand, the drying time decreased dramatically with the air 

temperature (Goyal et al., 2007; Saeed et al., 2006), as the capacity of air to remove moisture 

increases with its temperature (Sigge et al., 1998).  
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Figure 8a.  Drying rate vs. MR at 35°C (left: 1.5m/s; right: 3.0m/s) 
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Figure 8b.  Drying rate vs. MR at 45°C (left: 1.5m/s; right: 3.0m/s) 
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Figure 8c.  Drying rate vs. MR at 55°C (left: 1.5m/s; right: 3.0m/s) 
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Figure 8d.  Drying rate vs. MR at 65°C (left: 1.5m/s; right: 3.0m/s) 
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The drying rate was increased with the increment of the temperature from 35
o
C to 65

o
C, as the 

main factor influencing the drying kinetics is the drying-air temperature (Belghit et al., 2000; 

Saeed et al., 2006; 2008a; Sigge et al., 1998). This is because, drying at high temperature led to 

high moisture diffusivity and provided a large water vapour pressure deficit, which is one of the 

driving forces for the drying process (Methakhup et al., 2005; Prabhanjan et al., 1995). In 

addition, the soft heating of the product accelerates the water migration inside the product 

(Kouhila et al., 2002).  

 

3.4 Validation of the model 

 

Two criterions were applied to validate the developed logarithmic drying model. The first one is 

the plotting of the predicted moisture ratio (MRpred) against the observed moisture ratio (MRobser) 

(Saeed et al., 2006; 2008b; Simal et al., 2005; Togrul & Pehlivan, 2003). Figures 9 show the 

predicted moisture contents (by the logarithmic model) versus observed moisture contents at 

different drying conditions. The results showed smooth and a good scatter of the data-points 

around the fitted straight lines. This confirmed the goodness of the logarithmic model to estimate 

the moisture content of the Roselle during the drying processes. Moreover, the values of the 

correlation coefficient (r
2
) obtained from the plotting of the MRexp and MRpred at different drying 

conditions were given in Table 3, with an average of 0.999. 

 

 

Table 3. Values of (r
2
) from plotting of observed MR vs. predicted values 

 
35°C 45°C 55°C 65°C 

1.5m/s 3.0m/s 1.5m/s 3.0m/s 1.5m/s 3.0m/s 1.5m/s 3.0m/s 

0.9997 0.9968 0.9990 0.9979 0.9999 0.9994 0.9995 0.9997 
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Figure 9a. MRexp vs.  MRpred at 35°C (left: 1.5m/s; right: 3.0m/s) 
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Figure 9b. MRexp vs.  MRpred at 45°C (left: 1.5m/s; right: 3.0m/s) 
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Figure 9c. MRexp vs.  MRpred at 55°C (left: 1.5m/s; right: 3.0m/s) 
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Figure 9d. MRexp vs.  MRpred at 65°C (left: 1.5m/s; right: 3.0m/s) 

 

The second criterion used to validate the logarithmic model is to plot the residual versus the 

predicted values by the model (Keller, 2001; Spatz, 2001). Figure 10 shows the plotting of the 

residual and predicted values (MRpred) resulted from fitting of the logarithmic model to the 

experimental data. The residual were randomly scattered around “zero-line” indicating that the 
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model describes the data well. There was no systematically positive or negative pattern of the 

residual data for much of the data range, and the data points were not skewed. These signify the 

suitability of the logarithmic model to describe the drying behaviour of the Roselle adequately. 
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Figure 10a. Residuals vs. MRpred at 35°C (left: 1.5m/s; right: 3.0m/s) 
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Figure 10b. Residuals vs. MRpred at 45°C (left: 1.5m/s; right: 3.0m/s) 
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Figure 10c. Residuals vs. MRpred at 55°C (left: 1.5m/s; right: 3.0m/s) 
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Figure 10d. Residuals vs. MRpred at 65°C (left: 1.5m/s; right: 3.0m/s) 

 

The moisture ratio (MR) can be expressed as a function of the drying constant and coefficients as 

follows: 

 (12)                                     

 

 

Where, the parameters can be given as follows:            

 

a = 0.849592375 + 0.003182815T     (r
2
 = 0.929) 

k = -0.0005485 + 0.00002662T             (r
2
 = 0.966) 

c = 0.0239675 - 0.0010141T                (r
2
 = 0.778) 

 

The parameters can be used, satisfactorily, to estimate the moisture content of Roselle at any 

time during the drying process.  

 

5. CONCLUSIONS 

 

The objectives of this part (II), of the work on solar drying of Roselle, were to study the effects 

of the drying conditions on the drying constant, drying coefficients, and drying rate; and to 

validate the developed logarithmic model. In part (I), statistical analysis proved the superiority of 

the logarithmic model to the others. The drying air temperature was highly influenced the drying 

rate constant (p=0.004). Higher values were obtained at higher temperatures. The linearity of (k) 

is obvious with the drying air temperature (r
2 

= 0.965). Compared to the effect of drying 

temperature, air velocity had slightly influenced rate constant (p =0.697). The coefficient (a) 

showed a positive relation with drying temperature (p=0.093). Parameter (c) showed a moderate 

dependent on both drying-air temperature (r
2
 =0.778 and p =0.258) and air velocity (r

2
 =0.670 at 

1.5m/s and r
2
 =0.701 at 3.0m/s, with p=0.150). The average values of the drying constant k and 

coefficients (a) and (c) obtained from logarithmic model were 0.000783, 1.008733 and -

0.026738, respectively. The drying rate of Roselle was highly influenced by the drying air 

temperature. Higher temperatures resulted in higher drying rate. Air velocity had a little effect on 

the drying rate compared to that of the air temperature. Two criterions were applied to validate 

c  kt)( exp . a    
M

M
    t)c,k,(a, MR
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the developed logarithmic model. Plotting of the experimental against predicted values, and the 

residual versus predicted values. The results confirmed the suitability of the model to predict the 

drying characteristics of the Roselle, satisfactorily, under the studied drying conditions. 
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7. NOMENCLATURE 
a coefficient in drying models ko constant in equation (4) 
A constant in equation (5) k1 coefficient in drying models 
a1.5 coefficient (a) at 1.5m.s

-1
 k1.5 coefficient (k) at 1.5 m.s

-1
 

a3.0  coefficient (a) at 3.0m.s
-1

 k3.0 coefficient (k) at 3.0 m.s
-1

  
b  coefficient in drying models l coefficient in drying models 
c  coefficient in drying models MCdb moisture content dry base (gw.gdm

-1
) 

B constant in equation (5) Me equilibrium moisture content 
c1.5 coefficient (c) at 1.5m.s

-1
  Mo initial moisture content (gw.gdm

-1
) 

c3.0 coefficient (c) at 3.0m.s
-1

 MR moisture ratio (-) 
DR drying rate (gw.gdm

-1
min

-1
) Mt moisture content at time t (gw.gdm

-1
) 

E constant in equation (4) Mt+dt moisture content at (t+dt) 
exp exponent n coefficient in drying models 
g  coefficient in drying models R constant in equation (4) 
h  coefficient in drying models r

2 
correlation coefficient 

k  drying constant (min
-1

) t  drying time (min) 
ko  coefficient in drying models T temperature (°C) 
Subscripts   
1.5 air velocity  (m.s

-1
) exp experimental  

3.0 air velocity  (m.s
-1

) pred predicted  
d dry matter (g) obser. observed 
db dry base (-) w water (g) 

 


