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Abstract: This work aimed at modeling thin-layer solar drying of cassava noodles (tapioca).  The selection of good drying 
models for dryers helps to improve their efficiency.  Drying data of tapioca was obtained using a forced convection solar dryer.  
The treatment combinations of the experiment comprise of air flow velocities (V) of 1.5, 2.5, and 3.5 m s-1; drying layer 
thicknesses (B) of 0.48 and 0.72 cm; and initial moisture contents (Mi) of 297%, 186%, and 122% (dry basis).  Eleven 
thin-layer drying models from literature, in addition to a new model developed in this work were all fitted to the solar drying 
data of tapioca.  Least square regression analysis was carried out and comparison between drying models was made using 
goodness of fit statistical parameters.  Drying kinetics of the tapioca was determined.  Effective moisture diffusivity and 
activation energy of the tapioca were also determined.  The results obtained from the analysis show that the new model 
(Modified Aghbashlo model) was the best fitted to the drying data of tapioca.  The determined effective moisture diffusivity of 
the tapioca samples varied from 4.93×10-11 to 8.82×10-11 m2 s-1.  Also, the activation energy of the tapioca samples was 
determined as 28 kJ mol-1. 
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1  Introduction  

The main purpose of drying agricultural materials is 
to provide longer periods of storage, minimize packaging 
requirements and reduce transportation weights and costs. 
Majority of crop drying processes are done using 
expensive and nonrenewable energy sources, such as fossil 
fuel, electricity, and biomass fuel. Therefore, cheaper and 
renewable energy sources for dryers such as solar energy 
are now being considered. Also, the selection of good 
drying models for dryers helps to improve their efficiency. 
Models are often used to study the variables involved in a 
process, predict drying kinetics of the product and 
optimize the operating parameters and circumstances 
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(Karathanos and Belessiotis, 1999). Cassava 
(Manihotesculentacrantz) is the fourth most important 
staple food in the world after rice, wheat and maize 
(IFAD/FAO, 2000). Nigeria produces over 40 million 
metric tonnes of cassava annually, which should be 
processed quickly into storable forms so as to avoid 
deterioration (FAO, 2012). These storable forms are the 
by-products of cassava, one of which is cassava noodle 
(tapioca). Cassava noodle (tapioca) is a cassava-by 
product, that is popular and relished by the Eastern and 
Southern Nigerians. Dried tapioca is usually soaked in 
water and eaten with or without coconut or peanuts as 
snack (Ihekoronye and Ngoddy, 1985). The softened 
tapioca, also known locally as a bacha, when cooked with 
vegetable, palm oil, fish and other food seasoners is known 
as local (African) salad.  

Adequate and efficient drying systems for timely 
drying of tapioca are not yet fully developed and 
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operational. Undesirable biochemical changes and 
subsequent contamination and spoilage of the tapioca can 
only be prevented if the drying process is fast enough, and 
the final product dried to the required moisture content. 
Several researches on selection of drying models for 
thin-layer drying of some cassava by-products and other 
agricultural materials are reported in the literature. 
However, no research work on selection of thin-layer 
drying models for cassava noodles (tapioca) is contained 
in the literature.  

Therefore, the objectives of this work are to: (i) study 
the thin-layer drying kinetics of tapioca using the solar 
dryer, (ii) fit the drying data of tapioca to twelve 
thin-layer models from literature, and (iii) determine the 
effective moisture diffusivity and activation energy of 
tapioca. 

2  Materials and method 

2.1 Description of the equipment used 
The solar dryer that was used for the experiment is a 

forced convection integral type solar collector. The solar 
collector chamber consists of a wooden box of 
rectangular cross-section of length of 1.15 m and width of 
0.75 m, giving a cross sectional area of 0.86 m2. The face 
of the collector chamber was titled at an angle of 5°29′ 
which is the latitude of Owerri. The top of this section 
was covered with a plain glass. The base of the dryer was 
lined with layer of dark painted pebbles, which act as a 
thermal storage unit. A galvanized steel plate having the 
same dimensions as the collector area and painted dull 
black was used as an absorber plate. This absorber plate 
overlay the thermal storage unit. Also, a square hole of 
dimensions 8 cm × 8 cm, drilled at the exit point, serves 
as the exit for exhaust air. It also has two access doors 
used to control the operations. The drying chamber 
consists of two racks, each containing two trays of 
dimensions 0.44 m length × 0.44 m width and depth of 
0.04 m. The interior sides of the dryer were lined with 
aluminum foil, so as to enhance reflectivity of heat inside 
the dryer chamber. Axial flow fan used in the solar dryer 
was equipped with a speed regulator. The fan was 
powered by a 20 watts capacity solar panel that was 
connected to 12 volts, 5 Amps, D.C battery for power 
storage. 

2.2  Procedure for the experimental test 
The experiment was designed to be a 3×2×3 factorial 

in completely randomized design in three replications 
with factors: initial moisture content of tapioca (297%, 
186%, and 122%); layer thickness of tapioca (0.48 and 
0.72 cm); and air flow velocity (1.5, 2.5, and 3.5 m s-1). 
The layer thicknesses of 0.48 and 0.72 cm were achieved 
by using two layers (0.48 cm) and three layers (0.72 cm) 
of the tapioca samples respectively. According to ASAE, 
(1999), a thin-layer is a layer that is fully exposed to 
drying air and should not exceed three layers of particles 
(materials) for forced convection drying, at air velocity 
not less than 0.3 m s-1.  

Large quantities of freshly prepared tapioca were 
purchased from the Owerri main market, Imo state, 
Nigeria. These tapioca samples, which were processed 
from the same variety of cassava tubers (NR 8082) were 
conditioned to three initial moisture contents of 297%, 
186%, and 122% (dry basis).At the beginning of the 
experiment, the solar dryer was positioned in an open 
place, away from tall trees and buildings, so as to 
minimize the effect of shading. The solar dryer was 
aligned in the North-South axis and positioned to face 
South as recommended in literature (Duffie and Beckman, 
2006; Tiwari, 2012). The dryer was allowed to run for 30 
minutes under no load, before the commencement of 
drying tests. This enabled the dryer to attain equilibrium 
conditions. A given mass of the tapioca samples was 
weighed using the digital weighing balance (OHAUS) of 
capacity 4.1 kg and sensitivity of 0.01g, and then placed 
inside the dryer cabinet. During the drying test, the mass 
of the tapioca samples was determined at hourly intervals. 
Also, the dry bulb temperature and relative humidity of 
the dryer; as well as the wet and dry bulb temperatures of 
the ambient air were determined at hourly intervals using 
a digital hygrometer and a wet and dry bulb thermometer 
respectively. A hand-held pyranometer (model: 4890.20; 
Frederiksen) was used to measure the insolation falling 
on the surface of the solar dryer at hourly intervals. The 
drying process continued until equilibrium moisture 
content of the tapioca at the given drying conditions was 
reached. This point was characterized by a constant mass 
recorded for two consecutive measurements of mass 
during the drying process. At the end of the drying 
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experiment, the tapioca samples were oven dried at a 
temperature of 100°C for 8 hours to obtain the oven dried 
mass, as recommended in literature (Kajuna et al., 2001). 
The moisture ratio for each experiment was determined 
using Equation (1). 
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where, Mt = moisture content of the material at a given 
time (g H2O 100 g-1 dry matter); Me = equilibrium 
moisture content (g H2O 100 g-1 dry matter); Mi = initial 
moisture content (g H2O 100 g-1 dry matter); k = drying 
constant. 

Equation (1) applies to drying under uniform 
temperature and relative humidity. However, during solar 
drying of crops, the samples were not exposed to uniform 
relative humidity and temperature. Therefore, the 
moisture ratio was simplified as reported by Midilli et al. 
(2002), Kingsley and Singh (2007) and expressed as 
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2.3  The new model 
The new model is a modified form of Aghbashlo 

model. It was developed by adding a constant (c) to the 
Aghbashlo model. The added constant (c) is assumed to be 
a factor of incident solar radiation received on the surface 
of the solar dryer. The mathematical expression for the 
modified Aghbashlo model is given in Equation (3).  
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2.4  Fitting of thin-layer drying models to 
experimental data 

A total of twelve thin-layer drying models as shown 
in Table 1 were fitted to the drying data of tapioca, using 
the nonlinear regression analysis programme, based on 
least squares Levenberg-Marquardt algorithm. The 
criteria for the selection of the best fitted model was 
based on goodness of fit statistical parameters, which 
include coefficient of determination (R2), adjusted 
coefficient of determination (AR2), root mean squared 
error (RMSE), and standard error of estimate (SEE). The 
statistical parameters are mathematically expressed in 
Table 2. 

A model was selected based on the model with the 

highest values of R2 and AR2 and lowest values of RMSE 
and SEE. 
 

Table 1  Thin-layer drying models used for the research 

S/N Model name Equation 

1 Newton (Lewis) MR = exp(–kt) 

2 Page MR = exp(–ktn) 

3 Henderson and Pabis MR = a exp(–kt) 

4 Logarithmic MR = a exp(–kt) + c 

5 Two-term MR = a exp(–k0t)+ bexp(–k1t) 

6 Two-term exponential MR = a exp(–kt) +(1–a)exp(–kat) 

7 Verma et al. MR = a exp(–kt) +(1–a)exp(–gt) 

8 Diffusion approach MR = a exp(–kt)+(1–a)exp(–kbt) 

9 Wang and Singh MR = 1 + at +bt2 

10 Aghabashlo MR = exp–{(k1t)/(1+k0t)} 

11 Weibull MR = exp(–(t/a)b) 

12 Modified Aghbashlo MR = exp–{(k1t)/(1+k0t)}+ct 
 

Table 2  Mathematicalexpressions for the statistical 
parameters used in the research 

Parameters Formula 

Coefficient of determination 2 1SSR SSER
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= = −  
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/
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The standard error of estimate 
(SEE) 
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Root mean square error 
2
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N

=
−

= ∑  

Note: SSR is regression sum of squares; SST is total sum of squares; SSE is error 
sum of squares; dferror is error degrees of freedom; dftotal is total degrees of 
freedom; MRexp is experimental moisture ratio; MRcal is calculated moisture ratio; 
N is number of data points; n is empirical constant and; p is parameter. 

 

2.5  Determination of effective moisture diffusivity of 
tapioca 

The tapioca slices were considered to be 
approximately of slab geometry, of average thickness of 
0.24 cm. The effective moisture diffusivity was 
determined according to Maskan et al. (2002) as 
represented in Equation (4). Effective moisture diffusivity 
was calculated by plotting values of natural logarithm of 
moisture ratio (lnMR) versus drying time (seconds). The 
effective moisture diffusivity was calculated using 
method of slopes (Maskan et al., 2002; Doymaz, 2004) 
and expressed in Equation (5). 
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where, Deff is effective moisture diffusivity, m2 s-1; t is 
drying time, s, and L is half of slab thickness, m. 
2.6  Determination of the activation energy of tapioca 

The activation energy was calculated using an 
Arrhenius type equation (Lopez et al., 2000; Akpinar et 
al., 2003) as given in Equation (6). 

exp a
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a

E
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            (6) 

where, Ea is the activation energy, kJ mol-1; R is universal 
gas constant (8.3143 kJ mol-1 K-1); Ta is absolute air 
temperature, K, and D0 is the pre-exponential factor of the 
Arrhenius equation, m2 s-1. Finding the natural logarithm 
of each component in Equation (6) gives 

ln ln a
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a

E
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A plot of lnDeff  versus 1/Ta in Equation (7) gives a 
straight line graph whose slope (SA) is given as 

a
A

E
S

R
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3  Results and discussion 

3.1  Fitting of drying data of tapioca to thin-layer 
drying models 

The tapioca samples were dried from varying initial 
moisture contents of 297%, 186%, and 122% (average of 
202%, expressed in dry basis) to final moisture content of 
9.8% (dry basis). The values of moisture ratios obtained 
with drying time of tapioca are summarized in Appendix 
(1). The results of fitting the twelve thin-layer drying 
models to the experimental drying data for tapioca are 
summarized in Table 3. The values of the drying 

constants obtained from fitting the twelve thin-layer 
models to the drying data are given in Table 4. 

From the results in Table 3, it was observed that all 
the models showed high values of R2 (0.98284-0.9964) 
and AR2 (0.97879-0.9953). Also all the models showed 
low values of RMSE and SEE. However, the new model 
(modified Aghbashlo model) with the highest R2 and AR2 
values of 0.9964 and 0.9953 respectively; and lowest 
RMSE and SEE values of 0.00055 and 0.02259 
respectively, best fitted the thin-layer solar drying data of 
tapioca. This implied that the new model could be used to 
predict to a high degree of accuracy, the drying kinetics 
of tapioca within the range of applied drying conditions. 
By substituting the values of the constants k0, k1, and c in 
Table 4 into Equation (3), gave the specific form of the 
new model for thin-layer solar drying of tapioca as 

0.3241exp 0.0035
1 0.0208

tMR t
t

⎛ ⎞= − −⎜ ⎟+⎝ ⎠
      (9) 

 

Table 3  Average values of statistical parameters obtained 
from fitting the models to drying data 

S/N Model name R2 AR2 RMSE SEE 

1 Newton 0.98284 0.98284 0.02088 0.04232

2 Page 0.99238 0.99147 0.00101 0.03022

3 Henderson &Pabis 0.98528 0.98357 0.002002 0.0414 

4 Logarithmic 0.99349 0.99157 0.001012 0.03067

5 Two term 0.98638 0.98004 0.00246 0.04498

6 Two term exponential 0.99106 0.99 0.001204 0.03255

7 Verma et al 0.99276 0.99084 0.001102 0.030697

8 Diffusion 0.98284 0.97879 0.00264 0.068022

9 Wang & Singh 0.98763 0.98619 0.00153 0.03475

10 Aghabashlo 0.99371 0.99293 0.00082 0.02754

11 Weibull 0.99238 0.99147 0.00102 0.03022

12 New model 0.9964 0.9953 0.00055 0.02259
 

 

Table 4  Average values of drying constants obtained from fitting drying data of tapioca to the different thin-layer models 

Model name a b c g k ko k1 n 

Newton     0.3435    

Page     0.3058   1.13898 

Henderson &Pabis 1.0129    0.347    

Logarithmic 1.2107  –0.21696  0.2873    

Two term 0.3165 0.7024    3.244 0.3397  

Two term exponential 1.3202    0.6617    

Verma et al 81.1845   3.3375 0.4015    

Diffusion 1 1   0.3435    

Wang and Singh –0.2589 0.019       

Aghbashlo      –0.0317 0.3046  

Weibull 3.157 1.139       

New model   –0.0035   0.0208 0.3241  
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Table 5 gives the statistical parameters and drying 
constants obtained from fitting the drying data of tapioca 
to modified Aghbashlo model. It was evident from the 
table that the Aghbashlo model fitted best to the tapioca 
samples, dried at initial moisture content of 122% (dry 

basis), layer thickness of 0.48 cm, and air flow velocity of 
2.5 m s-1. This treatment gave the highest R2 and AR2 
values of 0.9995 and 0.9992 respectively, and lowest 
RMSE and SEE values of 0.00011 and 0.01053 
respectively. 

 

Table 5  Statistical parameters and drying constants for Modified Aghbashlo model 

M B V R2 AR2 RMSE SEE k0 k1 c 

1.5 0.9911 0.9889 0.0012 0.03422 0.54755 0.4961 –0.0539 

2.5 0.996 0.9948 5.59E–04 0.0236 0.41081 0.6933 –0.0361 0.48 

3.5 0.996 0.9952 0.00047 0.0216 0.36373 0.5266 –0.0298 

1.5 0.9958 0.9949 0.00062 0.0248 –0.0598 0.1179 –0.0018 

2.5 0.9968 0.996 0.00049 0.02208 –0.0651 0.1215 –0.0062 

297 

0.72 

3.5 0.9974 0.9969 0.00039 0.01965 –0.0644 0.1333 0.0028 

1.5 0.9949 0.9935 0.00083 0.02878 –0.0901 0.2399 0.0067 

2.5 0.9968 0.9957 0.00051 0.02261 0.04904 0.40419 –0.0132 0.48 

3.5 0.9965 0.9956 0.00049 0.02231 0.01396 0.23489 –0.0138 

1.5 0.9947 0.9934 0.00081 0.0285 –0.0789 0.21303 0.0055 

2.5 0.9954 0.9938 0.00082 0.02865 –0.1119 0.21187 0.0062 

186 

0.72 

3.5 0.9988 0.9985 0.00019 0.01361 –0.0515 0.2799 0.0046 

1.5 0.9971 0.9961 0.00047 0.0217 –0.0428 0.41936 0.00943 

2.5 0.9995 0.9992 0.00011 0.01053 –0.1512 0.36097 0.0172 0.48 

3.5 0.9965 0.9955 0.00053 0.02302 –0.0673 0.28722 0.0092 

1.5 0.9989 0.9985 0.00019 0.01373 –0.1041 0.2865 0.0124 

2.5 0.9943 0.9915 0.00113 0.03355 –0.1134 0.40303 0.0128 

122 

0.72 

3.5 0.9987 0.9983 0.00018 0.01357 –0.0103 0.40459 0.0055 

Average 0.9964 0.9953 0.00055 0.02259 0.0208 0.32412 –0.0035 

Note: M = initial moisture content (% dry basis), B = Layer thickness of tapioca (cm), V= air flow velocity (m s-1). 
 

The comparison between the predicted and 
experimental values of moisture ratio for the new model 
is shown in Figures 1 and 2. The curves show very close 

correlation between the predicted and the experimental 
moisture ratios of the tapioca.  

 
a. For layer thickness of 0.48 cm  b. For layer thickness of 0.72 cm 

 

Figure 1  Experimental and predicted values of moisture ratio at varying times for the new model at velocity of 1.5 m s-1 
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a. Aghbashlo Model  b. Modified Aghbashlo Model 

 

Figure 2  Experimental and predicted values of moisture ratio at varying times for velocity of 1.5 m s-1 and layer thickness of 0.72 cm 
 

3.2  Results obtained for drying kinetics of tapioca 
From the drying curves (Figures 1 and 2), it was 

observed that the drying of the tapioca samples 

exhibited the characteristic moisture desorption  
behavior. An initial high rate of moisture removal was 

followed by slower rate of moisture removal at the later 

stages. This characteristic behavior is due to the 
variations in the tenacity with which water is held in 

agricultural products. As the drying progressed, the 
moisture ratio and moisture content values were 

observed to decrease non- linearly with increase in 

drying time for all the samples. This characteristic 
behavior is also reported for other agricultural materials 

like carrot, cassava chips, pre-treated cassava chips, and 
mulberry. (Aghbashlo et al., 2009; Ajara et al., 2012; 

Tunde-Akintunde and Afon, 2010; Doymaz, 2004). Also 

from Appendix1 and Figures 1 and 2, it was evident that 
the drying rates of tapioca varied with different values 

of initial moisture content, air flow velocity, and layer 
thickness of tapioca. 

3.3  Results obtained for effective moisture diffusivity 

and activation energy 
The values of the slope (S) for each treatment, and the 

value of L, which was determined as half of 0.24 cm = 
0.12 cm (0.0012 m) were substituted into Equation (4) to 

determine the values of effective moisture diffusivity as 

summarized in Table 6. The graphical plots of lnMR 
versus drying time are summarized in Figure 3. 
 

Table 6  Effective moisture diffusivities (Deff) obtained for the 
drying of tapioca 

B 0.48 (cm) 0.72 (cm) 

M/V 1.5 2.5 3.5 1.5 2.5 3.5 

 Values of Deff ×10-11 

297 6.11 7.37 5.22 5.27 5.72 4.93 

186 6.48 7.24 5.45 5.98 7.49 5.72 

122 6.21 8.77 5.71 6.41 8.82 5.61 

Mean 6.27 7.79 5.46 5.89 7.34 5.42 

Note: B = drying layer thickness (cm), V = air flow velocity (m s-1), M = initial 
moisture content (%). 

 
a. Initial moisture content of 297% (db) 

 
b. Initial moisture content of 186% (db) 

Figure 3  Plots of ln MR versus time for layer thickness of 0.48 cm 
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Graphical plots of natural logarithm of effective 

moisture diffusivity (ln Deff) versus the reciprocal of the 

absolute dryer temperature (1/T) were plotted for selected 

treatments (Figure 4). The slope (SA) of the straight-line 

curve gave a value of –3437 K-1, while the intercept of 

the curve (lnD0) is –12.99. Thus, by substituting for SA = 

–3437 K-1 and R = 8.3143×10-3 kJ mol-1 into Equation (7) 

gave the value of the Activation energy (Ea) for the 

drying of tapioca as 28.576 kJ mol-1. 

 
Figure 4  Graphical plots of lnDeff versus 1/T 

 

The range of effective moisture diffusivities obtained 

for tapioca (4.93×10-11 m2 s-1 to 8.82×10-11 m2 s-1) are 

within the range of values, and slightly higher than the 

values of 2.43×10-11 to 4.52×10-11 m2 s-1 reported for 

cassava chips (Ajala et al., 2012). However, the range of 

values of effective moisture diffusivities determined for 

tapioca are lower than the values of 7.31 to 8.06×10-7 

reported for pre-treated cassava chips (Tunde-Akintunde 

and Afon, 2010). The difference in values may be 

attributed to: the different methods of processing the 

cassava tubers into chips and tapioca, the pretreatment 

given to the cassava chips, and the type of drying system 

used. Also, the effective moisture diffusivities of tapioca 

varied with the different treatments in the experiment. 

The Activation energy of 28.576 kJ mol-1 that was 

obtained for tapioca, is within the range of values of 16.1 

to 44.49 kJ mol-1, reported for stone apple, cassava chips, 

finger millet, and bell pepper (Rayaguru and Routray, 

2012; Ajala et al., 2012; Rhadika et al., 2011; 

Taheri-Garavand et al., 2011). 

4  Conclusion 

This research showed that a modified form of 

Aghbashlo model was best fitted to the thin-layer, solar 

drying kinetics of tapioca. This study also revealed that 

the values of effective moisture diffusivities, and the 

value of activation energy obtained for thin-layer, solar 

drying of tapioca are within the range of values recorded 

in literature for related agricultural products. However, it 

is recommended that the new model (modified Aghbashlo 

model) should be used to further fit drying data of other 

agricultural materials. 
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Appendix 1  Values of moisture contents for different drying times of the experiment 

Time, h 
B V M 

0 0.5 1 2 3 4 5 6 7 7.5 8 8.5 9 10 10.5 11 11.5

1.5 297 1 0.75 0.69 0.54 0.43 0.33 0.24 0.13 0.07  0.05  0.03     

1.5 186 1 0.84 0.75 0.62 0.39 0.24 0.13 0.1 0.06  0.05       

1.5 122 1 0.85 0.62 0.43 0.26 0.17 0.12 0.09 0.08         
0.48 

Mean 202 1 0.81 0.69 0.53 0.36 0.25 0.16 0.11 0.07  0.05  0.03     

2.5 297 1 0.7 0.6 0.4 0.3 0.21 0.11 0.06 0.04 0.03        

2.5 186 1 0.8 0.65 0.48 0.31 0.22 0.1 0.06 0.05         

2.5 122 1 0.84 0.67 0.39 0.18 0.11 0.08           
0.48 

Mean 202 1 0.78 0.64 0.42 0.26 0.18 0.1 0.06 0.05 0.03        

3.5 297 1 0.76 0.65 0.49 0.41 0.32 0.24 0.18 0.12  0.07  0.05 0.04 0.03   

3.5 186 1 0.85 0.75 0.63 0.48 0.37 0.26 0.18 0.11  0.06  0.05     

3.5 122 1 0.86 0.73 0.54 0.4 0.2 0.18 0.11 0.09 0.08        
0.48 

Mean 202 1 0.82 0.71 0.55 0.43 0.3 0.23 0.16 0.11 0.08 0.07  0.05 0.04 0.03   

1.5 297 1 0.91 0.85 0.73 0.65 0.54 0.43 0.36 0.23  0.12  0.06 0.04 0.03   

1.5 186 1 0.86 0.75 0.63 0.48 0.33 0.17 0.11 0.08  0.06 0.05      

1.5 122 1 0.88 0.75 0.51 0.3 0.2 0.12 0.09 0.08         
0.72 

Mean 202 1 0.88 0.78 0.62 0.48 0.36 0.24 0.19 0.13  0.09 0.05 0.06 0.04 0.03   

2.5 297 1 0.91 0.87 0.72 0.64 0.5 0.37 0.26 0.2 0.11 0.05  0.03     

2.5 186 1 0.85 0.76 0.61 0.43 0.24 0.1 0.06 0.05         

2.5 122 1 0.8 0.62 0.43 0.17 0.1 0.08           
0.72 

Mean 202 1 0.85 0.79 0.59 0.41 0.28 0.18 0.16 0.13 0.11 0.05  0.03     

3.5 297 1 0.92 0.83 0.72 0.64 0.53 0.39 0.27 0.2  0.13  0.08 0.06  0.04 0.03

3.5 186 1 0.9 0.73 0.54 0.39 0.26 0.18 0.11 0.08  0.06  0.05     

3.5 122 1 0.8 0.66 0.47 0.31 0.2 0.13 0.11 0.09 0.08        
0.72 

Mean 202 1 0.87 0.74 0.58 0.45 0.33 0.23 0.16 0.12 0.08 0.1  0.07 0.06  0.04 0.03

Note: B = drying layer thickness (cm), V = air flow velocity (ms-1), M = initial moisture content (%). 

 


